Gas Measurement

RB 1700 - 3/4"

Commercial & Industrial Regulator

The RB 1700 regulator is designed for commercial applications, appliance pressure regulation, secondary regulation of plant distribution piping, and all installations with continuous consumption and rapid flow rate variations, such as burners, industrial ovens, boilers, etc.

Description

The RB 1700 model is a direct-acting, spring-loaded regulator with an optional built-in safety shut-off device. Its balanced valve design ensures constant outlet pressure when the upstream pressure varies. An optional built-in shut-off valve offers protection against over-pressure and over-and under-pressure. Its bypass system eases the shut-off valve relatching.

Technical Features

Inlet pressure	19 bar			
Outlet pressure	0.1 bar - 4.8 bar			
Accuracy & lock-up pressure	Up to AC 10 / up to SG 20			
Operating temperature	-20°C to +60°C			
Ambient temperature	-30°C to +60°C (body material)			
Acceptable gases	Natural gas, town gas, propane, butane, air, nitrogen or any non-corrosive gas			
Safety devices	Optional built-in safety shut-off valve: over-pressure shut-off (OPSO) and under-pressure shut-off (UPSO)			

Sizes & Connections

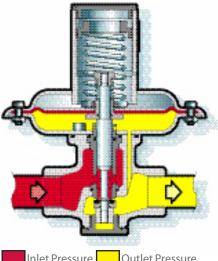
Body sizes	3/4"
Outlet pressure	Parallel internal thread according to ISO 7-1, ISO 228-1 or NPT

Materials

Body	Spheroidal graphite cast iron EN 1563 grade EN- GJS-400-15
Head	Pressed steel UNI EN 10025
Internal parts	Stainless steel and brass
Seals	Nitrile rubber
Diaphragm	Synthetic rubber with fabric reinforcement

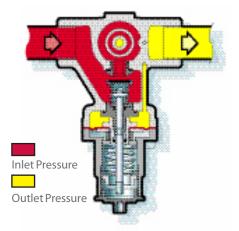
Key Benefits

- » High flow accuracy
- » Easy maintenance
- » Rugged construction for durability
- » Balanced valve design eliminates inlet pressure effect
- » EN 334 compliant


Operational Diagram

Accuracy class (AC), lock-up pressure class (SG) and lock-up pressure zone:

- » RB 172x 0.1 0.4 bar AC 20 / SG 30
- » RB 172x 0.4 1.3 bar AC 10 / SG 20
- » RB 173x 0.5 2.5 bar AC 10 / SG 20


The typical lock-up pressure zone is:

Qmin, Pu 2.5 Qmax, Pu 100

Inlet Pressure Outlet Pressure

Operational Diagram

Standard conditions:

- » Absolute pressure of 1.013 bar
- » Temperature of 15°C

Spring characteristics:

d: wire diameter	Lo: height
De: external diameter	Lt: no. of spires

Correction factor for non-natural gas applications:

The flow rates are indicated for a 0.6 specific gravity gas.

To determine the volumetric flow rate for gases other than natural gas, multiply or calculate the values in the capacity tables using the sizing equations with a correction factor.

The table below lists correction factors for some common gases:

Gas type	Specific gravity	Correction factor
Air	1.00	0.77
Butane	2.01	0.55
Carbon dioxide (dry)	1.52	0.63
Carbon monoxide (dry)	0.97	1.00
Natural gas	0.60	1.00
Nitrogen	0.97	0.79
Propane	1.53	0.63
Propane-Air mix Specific gravity or relative der	1.20 nsity (air = 1, non-	0.71 dimensional value)

Use the following formula to calculate the correction factor for gases not listed above. In the formula, d is the specifi c gravity of the gas.

Correction factor = $\sqrt{\frac{0.6}{d}}$

SAFETY SHUT-OFF VALVE

The RB 1700 Series regulators can be fitted with a safety shut-off valve for overpressure (OPSO) or combined under-and over-pressure (UPSO/OPSO) protection. The SSV trip pressure can easily be adjusted independently of the regulator set point. The closing plug of the SSV controller is used as a pulling tool to relatch the valve.

Outlet Pressure Range

Regulator 3/4"

A built-in bypass, for balancing pressure before relatching the safety shut-off valve, is operated by pulling the valve stem.

Accuracy class (AG)

» 0.3 - 5.7 bar AG 10

Minimum difference between regulator and SSV settings (ΔPw):

» 15%, of set point

5									
Spring	Spring Characteristic				Spring Range				
Code	d (mm)	De (mm)	Lo (mm)	Lt	1720 - 1721 - 1722 (Ø165)	1730 - 1731 - 1732 (Ø90)			
20565141	3.5	35	80	8	0.12 - 0.40 bar	•			
20565142	4	35	80	8	0.21 - 0.65 bar	•			
20565143	4.5	35	80	8	0.34 - 0.92 bar	•			
20565144	5	35	80	8	0.55 - 1.32 bar	•			
20565127	3.5	35	50	6	•	0.50 - 0.85 bar			
20565128	4	35	50	6	•	0.80 - 1.30 bar			
20565129	4.5	35	50	6	•	1.20 - 2.30 bar			
20565130	4.5	35	60	6.5	•	2.00 - 3.30 bar			
20565131	5	35	60	6.5	•	2.00 - 4.80 bar			

Safety Shut-off Valve

Over Pressure Shut-off Springs (OPSO)

over ressure share on springs (or so)									
	Spring Characte			tic	Spring Range				
Spring Code	d (mm)	De (mm)	Lo (mm)	Lt	1721 - 1722 - 1731 - 1732 (Ø60)				
20563124	2.2	25	35	5.5	0.30 - 0.60 bar				
20563121	2.5	25	35	5	0.50 - 1.10 bar				
20563115	3	25	35	5.5	1.10 - 2.10 bar				
20563116	3.5	25	35	5.5	2.00 - 4.00 bar				
20563119 Under-Press	3.8 sure Shu	25 i t-off S p	36.5 orings (l		4.00 - 5.70 bar)				
20560516	1	10	30	5.5	0.10 - 0.22 bar				
20560517	1.2	10	30	5	0.22 - 0.45 bar				

Flow Capacity

The following table gives the maximum fl ow capacity - in m3/h at standard conditions. More data are available in the leaflet "RB 1700 Capacity Tables".

	Inlet Pressure									
Inlet Pressure	RB 1720	RB 1720	RB 1720	RB 1720	RB 1720	RB 1720				
	150 mbar	300 mbar	500 mbar	0.8 bar	2 bar	4 bar				
250 mbar	9	•	•	•	•	•				
500 mbar	17	16	•	•	•	•				
700 mbar	20	22	19	•	•	•				
1 bar	26	30	30	10	•	•				
1.5 bar	32	38	44	20	•	•				
3 bar	50	60	70	36	34	•				
5 bar	50	70	100	50	60	60				
7 bar	50	70	140	70	80	100				
≥ 10 bar	50	70	170	95	110	140				

In order to limit the noise emission it is recommended not to exceed a gas velocity of 100 m/s at the regulator outlet.

Flow Capacity

For a 0.6 specific gravity gas, the wide-open orifice flow (Q) may be calculated using the following equations:

- » Sub-critical flow behaviour: Q = KG v Pd(Pu Pd) where $(Pu Pd) \le 0.5 Pu$
- » Critical flow behaviour: Q = KG Pu / 2 where (Pu Pd) > 0.5 Pu
- Pd) ≤ 0.5 Pu
- Pu = absolute inlet pressure in bar Pd = absolute outlet pressure in bar

Q = volumetric flow rate in m3/h at

where:

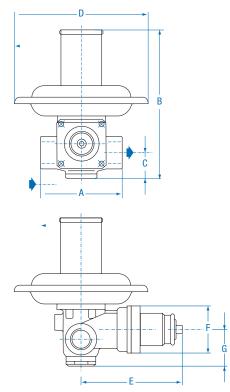
standard conditions

Wide-open Flow Coefficient KG

90 (without safety shut-off valve)

Overall Dimensions

-		Actuator Amm Bmm Cmm Dmm Emm Fm		Weight (kg)						
DN	Actuator	Amm	Bmm	Cmm	D mm	Emm	F mm	Gmm		with SSV
3/4″	Ø 165	100	185	32	165	130	60	46	3.0	4.0
3/4″	Ø 90	100	175	32	90	130	60	46	2.2	3.2


» SSV sensing line: internal

» SSV vent line: Rp 1/8

Vent and Sensing Lines

- » Regulator sensing line: internal
- » Regulator vent line: G 1/2" as option
- **Type Designation**

RBI 17	Х	Х	- DN	Х	Options
	2				Medium pressure
	3				High pressure
		0			No safety device
		1			Over-pressure shut-off valve
		2			Over-and under-pressure shut-off valve
				3/4"	Body size

RB 1700 DN 3/4" Gas

Information to be specified when ordering:

- » Regulator type code
- » Minimum and maximum inlet pressures
- » Outlet pressure range setting
- » Outlet pressure setting
- » Connection type
 - OPSO setting*
- UPSO setting*
- * (if requested)

Dresser Utility Solutions GmbH

Hardeckstr 2, 76185 Karlsruhe T: +49 (0)721 / 5981 - 100 F: +49 (0)721 / 5981 - 282

© 2022 Natural Gas Solutions North America, LLC – All rights reserved. Dresser Utility Solutions reserves the right to make changes in specifications and features shown herein, or discontinue the product described at any time without notice or obligation. Contact your Dresser Utility Solutions representative for the most current information. The Dresser Logo and all Trademarks containing the term "Dresser" are the property of Dresser, LLC, a subsidiary of Baker Hughes.

