RCS and ANDCO Electric Actuators

Electric Actuator

Controller
Microprocessor Based Analog \& Digital Positioner User Technical Manual

Models:

ACT100-115/230A
ACT100-24VAC
RCS and ANDCO

Refer all questions not covered in this manual to:
Industrial Products Group
RCS and Andco Actuators
16240 Port Northwest Drive
Houston, TX 77041
T: 832-590-2306
Toll Free: 1-800-945-9898
F: 713-849-2879

THESE INSTRUCTIONS PROVIDE THE CUSTOMER/OPERATOR WITH IMPORTANT PROJECT-SPECIFIC REFERENCE INFORMATION IN ADDITION TO THE CUSTOMER/OPERATOR'S NORMAL OPERATION AND MAINTENANCE PROCEDURES. SINCE OPERATION AND MAINTENANCE PHILOSOPHIES VARY, DRESSER NATURAL GAS SOLUTIONS (NGS) AND ITS SUBSIDIARIES AND AFFILIATES DOES NOT ATTEMPTTO DICTATE SPECIFIC PROCEDURES, BUT TO PROVIDE BASIC LIMITATIONS AND REQUIREMENTS CREATED BY THE TYPE OF EQUIPMENT PROVIDED.

THESE INSTRUCTIONS ASSUME THAT OPERATORS ALREADY HAVE A GENERAL UNDERSTANDING OF THE REQUIREMENTS FOR SAFE OPERATION OF MECHANICAL AND ELECTRICAL EQUIPMENT IN POTENTIALLY HAZARDOUS ENVIRONMENTS. THEREFORE, THESE INSTRUCTIONS SHOULD BE INTERPRETED AND APPLIED IN CONJUNCTION WITH THE SAFETY RULES AND REGULATIONS APPLICABLE AT THE SITE AND THE PARTICULAR REQUIREMENTS FOR OPERATION OF OTHER EQUIPMENT AT THE SITE.

THESE INSTRUCTIONS DO NOT PURPORT TO COVER ALL DETAILS OR VARIATIONS IN EQUIPMENT NOR TO PROVIDE FOR EVERY POSSIBLE CONTINGENCY TO BE MET IN CONNECTION WITH INSTALLATION, OPERATION OR MAINTENANCE. SHOULD FURTHER INFORMATION BE DESIRED OR SHOULD PARTICULAR PROBLEMS ARISE WHICH ARE NOT COVERED SUFFICIENTLY FOR THE CUSTOMER/OPERATOR'S PURPOSES the matter should be referred to dresser ngs.
the rights, obligations and liabilities of dresser ngs and the customer/operator are STRICTLY LIMITED TO THOSE EXPRESSLY PROVIDED IN THE CONTRACT RELATING TO THE SUPPLY OF THE EQUIPMENT. NO ADDITIONAL REPRESENTATIONS OR WARRANTIES BY DRESSER NGS REGARDING THE EQUIPMENT OR ITS USE ARE GIVEN OR IMPLIED BY THE ISSUE OF THESE INSTRUCTIONS.

THESE INSTRUCTIONS CONTAIN PROPRIETARY INFORMATION OF DRESSER NGS, AND ARE FURNISHED TO THE CUSTOMER/OPERATOR SOLELY TO ASSIST IN THE INSTALLATION, TESTING, OPERATION, AND/OR MAINTENANCE OF THE EQUIPMENT DESCRIBED. THIS DOCUMENT SHALL NOT BE REPRODUCED IN WHOLE OR IN PART NOR SHALL ITS CONTENTS BE DISCLOSED TO ANY THIRD PARTY WITHOUT THE WRITTEN APPROVAL OF DRESSER NGS.

Contents

1. Getting Started..
a. Document Conventions ...
b. Installation Notes...
c. Key Functions..
2. Quick Setup Instructions ... 1
a. Setting the analog input type: :.. 1
b. Setting the analog output type: :.. 1
c. Selecting output shaft rotation:.. 1
d. Positioning the potentiometer shaft:... 1
e. Calibrating the controller:.. 2
f. Exiting setup mode:... 2
3. Reloading the Factory Default Settings.. 2
4. Setting Nonstandard Input / Output Ranges.. 2
a. Setting a nonstandard analog input:... 2
b. Setting a nonstandard analog output:.. 3
5. Selecting an Alternate Fail Position on Loss of Command Signal.............. 3
a. Setting the Fail Safe Position:... 3
b. Setting the Fail Safe Loss of Signal Threshold:................................... 3
6. Using the Current Protection Option.. 3
7. The Automatic Calibration System ... 4
a. Starting a calibration... 4
b. Calibration Steps... 4
c. Troubleshooting a failed calibration... 6
8. Controller Menus...
a. Basic Setup Menu... 7
b. Advanced Setup Menus... 8
i. The Accuracy Menu [ACC] .. 8
ii. The Jogging System Menu... 10
iii. The Protection Menu.. 11
iv. The Limit Switch Menu.. 12
9. Error Messages and Troubleshooting... 12
10. Selecting Local/Remote Operation.. 13
a. Manual Operation... 13
b. Remote Operation Configuration Registers (Modbus).................... 13
c. Remote Operation Commands (BUSS) ... 13
d. Parameters Available by READ Commands................................... 14
e. DeviceNet Operation... 15
11. Connection Diagrams... 20

Figures
Figure 1 - Location of the Current Sense Transformer....................................... 20
Figure 2 - External Connection Details... 21
Figure 3 - Description of Analog Sources... 21

\triangle CAUTION

When manually operating the actuator, do not move actuator beyond the end of travel limit switch settings!

1. Getting Started

a. Document Conventions

The following documentation conventions are used throughout this manual:

1. Values shown on the display will be indicated with bold italics i.e. CC-r with upper and lower case letters used to simulate the actual display;
2. Keyboard keys will be shown using the $\uparrow, \downarrow, \leftarrow$ and SELECT symbols in bold;
3. Menu items will be indicated by the mnemonic shown on the controller's display.
First this manual will introduce the concepts required to setup a standard actuator. Other sections will cover the instructions for actuators requiring special settings.
b. Installation Notes

Note 1: These instructions assume that the ACT board is installed in the actuator and that all safety, installation and Controller startup instructions outlined in the specific RCS and ANDCO installation and instruction manuals have been followed. Verify that the actuator is in correct operating condition before an attempt is made to calibrate the ACT board. With the exception of Step 2.d. Positioning the potentiometer shaft and Step 2.e. Calibrating the controller, the actuator does not move during the setup.
Note 2: The Quick Setup instructions are correct for:

- Input signal requirements of 4-20 mAdc, 1-5 Vdc, $0-10 \mathrm{Vdc}$ or 2-10 Vdc
- Output signal requirements of 4-20 mAdc, 1-5 Vdc, $0-10 \mathrm{Vdc}$ or 2-10 Vdc
- To select Loss of input signal:
I. The actuator does not move,
II. Fails in last place.
III. For a setting of zero input signal, the system fails to minimum signal position.
IV. For all other options, refer to sections 4-7 of this manual.
Note 3: For rotary actuators: the terms "clockwise (C)" and "counterclockwise (CC)" refer to the direction of rotation of the actuator output shaft, as viewed from the top of the actuator. For linear actuators: the term "extend (E)", applies to the rod moving away from the body of the actuator, and "retract (R)", applies to the rod moving into the body
of the actuator, refer to the direction of movement of the extension rod. The ACT is always wired as shown in Figure 2. Refer to Figure 2 for status lamp descriptions. Output rotation, for rotary actuators, or extension rod direction of movement, for linear actuators, is changed using Step 2.c.

c. Key Functions

There are four keys used to select the system menus. The table below describes each key:
\leftarrow Go BACK one menu level and do not save value
\uparrow Move UP through menus or increase a value
\downarrow Move DOWN through menus or decrease value
K SELECT a menu item or save value
When working within the menus it is not necessary to return to the top level between setting parameters. The parameter value is saved to non-volatile memory when the SELECT key is pressed.

2. Quick Setup Instructions

a. Setting the analog input type:

1. Use the \uparrow or \downarrow pushbutton until it is displayed, then press the SELECT key.
2. Press the \uparrow or \downarrow pushbutton until the type of input signal required, 1-5 $\mathrm{Vdc}, \mathbf{0 - 1 0} \mathrm{Vdc}, \mathbf{2 - 1 0} \mathrm{Vdc}$, 4-20 mAdc is displayed.
3. Press the SELECT pushbutton to save the selection.
b. Setting the analog output type:
4. Use the \uparrow or \downarrow pushbutton until oUt is displayed, then press the SELECT key.
5. Press the \uparrow or \downarrow pushbutton until the type of output signal required, 1-5 $\mathrm{Vdc}, \mathbf{0 - 1 0} \mathrm{Vdc}, \mathbf{2 - 1 0}$ Vdc, 4-20 mAdc is displayed.
6. Press the SELECT pusbutton to save the selection.

c. Selecting output shaft rotation:

1. Press the \uparrow or \downarrow pushbutton until rotn is displayed, then press the SELECT key.
2. Press the \uparrow or \downarrow pushbutton to select the direction of travel required to move the actuator towards the maximum signal position, CC-r (counterclockwise for rotary actuators or retract for linear actuators) or C-E (clockwise for rotary actuators or extend for linear actuators)
3. Press the SELECT pushbutton to save the selection.
d. Positioning the potentiometer shaft:
4. Press the \uparrow or \downarrow pushbutton until Pot is displayed, then press the SELECT pushbutton.
5. The display will change to show the actual potentiometer value in internal divisions (0-1023) and the \uparrow or \downarrow pushbutton will now operate the actuator motor.
6. Run the actuator to approximately 50% of travel. Loosen the set screws retaining the potentiometer shaft. Rotate the shaft until the display reads approximately 510 divisions (50% of potentiometer span). Re-tighten the set screws.
7. To verify the potentiometer and limit switch settings, press the \uparrow pushbutton to energize the actuator. The value displayed on the LED array should increase towards the maximum of 1023 divisions. When the limit switch stops the actuator, check that the switch setting is correct for the required travel. The displayed value will typically be 975 divisions, but must not exceed 1000 divisions.
8. Now press the \downarrow pushbutton to move the actuator in the opposite direction of travel. The value displayed should decrease in value towards the minimum value of zero. The displayed value will typically be 50 divisions, but must not be less than 20 divisions. The difference between the end of travel values must be at least 500 divisions.
9. Press the SELECT pushbutton to exit potentiometer setup.

e. Calibrating the controller:

1. Press the \uparrow or \downarrow pushbutton until $\mathbf{C a l}$ is displayed, then press the SELECT key.
2. Press the \uparrow or \downarrow pushbutton until YES is displayed, then press the SELECT key.
3. The automatic calibration sequence will now begin.
4. To stop a calibration in progress, press the key. The calibration will be aborted and the previous calibration restored.

The display will indicate the calibration steps, C 1 though C 11, being performed. Should the calibration sequence fail, the display will indicate CF X, where \mathbf{X} is the number of the calibration step that failed. See Section 9. The Automatic Calibration System for a description of the calibration steps. No calibration values are saved unless the calibration sequence completes normally. When calibration is complete, the display will again show Cal.
f. Exiting setup mode:

1. Press the \leftarrow push button until the display shows the actual actuator position and the actuator begins to follow the input command signal.

3. Reloading the Factory Default Settings

The controller can restore all of the operating parameters to known values. The parameters should be restored under the following conditions:

1. The controller is operating erratically or positioning inaccurately;
2. The standard or advanced menus have been modified with unpredictable results
3. The controller has been re-installed in a different actuator.

There are four available Factory Default setups. Each of the setups is accessed using one of the four keyboard keys as described in the table below:

Key	Analog In/Out	Calibrate Delay Seconds
\boldsymbol{K}	$1-5 \mathrm{Vdc}$	5
$\boldsymbol{\psi}$	$4-20 \mathrm{mAdc}$	5
\uparrow	$0-10 \mathrm{Vdc}$	5
$\boldsymbol{4}$	$4-20 \mathrm{mAdc}$	20

To reload the Factory Default Settings:

1. Disconnect the power source from the actuator.
2. Press and hold the desired key.
3. Restore the power to the actuator.
4. The display will read: Fact, then done.
5. Release the key.

The controller will require configuration and calibration after the reload operation is complete. See Section 2. Quick Setup Instructions for details.

4. Setting Nonstandard Input / Output Ranges

To select a nonstandard input/output range you will require a process loop calibrator or alternately a multimeter and an adjustable process signal source. Connect the process calibrator or multimeter to the analog input and output terminals. See Figure 2 for connection details. The actuator will not move during this procedure.
a. Setting a nonstandard analog input:

1. Select the voltage or current input range that most closely matches your nonstandard configuration using Step 2.a of the Setup Instructions.
2. Use the \uparrow or \downarrow key until io is displayed, then press the SELECT key.
3. Set the process calibrator to the lowest input value.
4. Use the \uparrow or \downarrow key until ioFt is displayed, then press the SELECT key.
5. Use the \uparrow or \downarrow key to set the controller display to 0 .
6. Press the SELECT key to save the selection.
7. Set the process calibrator to highest input value.
8. Use the \uparrow or \downarrow key until iSPn is displayed, then press the SELECT key.
9. Use the \uparrow or \downarrow key to set the controller display to $\mathbf{1 0 0}$, or to full scale if the full scale value has been modified from 100.
10. Press the SELECT key to save the selection.
11. Press the \longleftarrow key until the display shows actual actuator position in increments of $0-100 \%$ and the actuator begins to follow the input command signal.

b. Setting a nonstandard analog output:

1. Select the voltage or current output range that most closely matches your nonstandard configuration using Step 2.b of the Setup Instructions.
2. Use the \uparrow or \downarrow key until io is displayed, then press the SELECT key.
3. Use the \uparrow or \downarrow key until ooFt is displayed, then press the SELECT key.
4. Use the \uparrow or \downarrow key to set the output signal lowest value as displayed on the process calibrator or multi-meter. The controller will automatically set the output to the lowest value during this step. The display indicates the value of the output $d-a$ converter from 0-1023.
5. Press the SELECT key to save the selection.
6. Use the \uparrow or \downarrow key until oSPn is displayed, then press the SELECT key.
7. Use the \uparrow or \downarrow key to set the output signal highest value as displayed on the process calibrator or multi-meter. The controller will automatically set the output to the highest value during this step. The display indicates the value of the output d-a converter from 0-1023.
8. Press the SELECT key to save the selection.
9. Press the \leftarrow key until the display shows actual actuator position in increments of $0-100 \%$ and the actuator begins to follow the input command signal.

5. Selecting an Alternate Fail Position on Loss of Command Signal

The controller can sense the loss of the analog input signal for configurations that have an input signal at least 2% of full scale above zero input. Two settings are available, loss of signal threshold and position on loss of signal. The EASC offers four failure modes to control the movement of the actuator in the event of a command signal loss:

- Fail in last position: no actuator movement upon loss of signal. This is the factory default setting.
- Fail to the full clockwise / extend position
- Fail to the full counterclockwise / retract position
- Fail to a preset position

NOTE: For a setting of zero input signal the system fails to minimum signal position.

a. Setting the Fail Safe Position:

1. Use the $\boldsymbol{\uparrow}$ or \downarrow key until io is displayed, then press the SELECT key.
2. Use the \uparrow or \downarrow key until FSPn is displayed, then press the SELECT key.
3. Use the \uparrow or \downarrow key to set the fail safe position to the required location. Setting the fail safe position to greater than full scale (101 standard), will enable fail in last position mode.
4. Press the SELECT key to save the selection.
b. Setting the Fail Safe Loss of Signal Threshold:
5. Use the \uparrow or \downarrow key until io is displayed, then press the SELECT key.
6. Use the \uparrow or \downarrow key until FSth is displayed, then press the SELECT key.
7. Use the \uparrow or \downarrow key to set the input threshold in percent, or units of full scale, where the fail safe function will be activated. The fail safe function will be activated whenever the input signal falls below the threshold setting. Hysteresis of 1% is automatically provided on the fail safe threshold.
8. Press the SELECT key to save the selection.

6. Using the Current Protection Option

An optional current sensing protection system is available for the controller. To utilize this system an optional current sense transformer is required. Plug the current sense transformer into the circuit board as shown in Figure 1. Pass the motor neutral (common) wire through the hole in the current sensor.

Figure 1 Location of the Current Transformer
The current protection system operates by comparing the motor current to a preset value hCUr. If the motor current exceeds hCUr for longer than the timer tCUr and over current error, $\mathbf{f} \mathbf{o c}$ will be displayed and the motor will be stopped. Once in over current, the controller will not respond to further requests for movement in the same direction, until a move in the opposite direction has occurred. Pressing any key on the keyboard can also clear the error.

The following advanced menu options require setup to use the current sensing system:

Item	Description	Default	Range
	This value determines the maximum full load amps of the actuator motor. Set this value to an amount at least 5% above the loaded running amps for the motor. The CSPn set- ting allows for the scaling of the sensed current value. The running current of the motor can also be displayed using the CSPn function. This value is scaled as 0.00A. Note the display does not show the implied decimal point.	200	$0-1023$

This value is automatically set during the calibration. The value is adjusted by selecting the menu item, then adjusting the value to 0 .
Coft
The value is calibrated in 0.01 A increments. Note the display does not show the implied decimal point.

This value is set by selecting the menu item and then manually running the actuator motor using a wire jumper or manual push button station. The display will indicate the running amps of the motor. The displayed value can be verified against a clamp-on or
CSPn in-line ammeter. Use the keyboard to adjust the display to indicate the actual running n / a

0-1023 current of the motor.
This value is scaled as 0.01 A . Note the display does not show the implied decimal point.

7. The Automatic Calibration System

The controller automatically determines the best operating parameters for the attached actuator. Before starting the calibration be certain that is actuator is safe to move and that the potentiometer and limit switch have been correctly adjusted. See Section 2.d. Positioning the potentiometer shaft for information on adjusting the potentiometer and limit switches.

a. Starting a calibration

To initiate an automatic calibration:

1. Press the $\boldsymbol{\uparrow}$ or \downarrow key until $\mathbf{C a l}$ is displayed, then press the SELECT key.
2. Press the $\boldsymbol{\uparrow}$ or \downarrow key until YES is displayed, then press the SELECT key.
3. The automatic calibration sequence will now begin
4. To stop a calibration in progress, press the \leftarrow key. The calibration will be aborted and the previous calibration restored.

b. Calibration Steps

The display will indicate the calibration step, C 1 though C 11, being performed. Should the controller be unable to complete the calibration cycle, the step where the cycle halted will be displayed as CFXX, with $\mathbf{X X}$ being the step number. The calibration is complete when the display returns to CAL. Refer to Section 10.
Connection Drawing for the location of the status lamps described in the calibration sequence.

The following are the steps performed during a calibration:

Step	Description	$\begin{gathered} \text { Lamp } 2 \\ \text { rotn }=\text { CC-r } \end{gathered}$	$\begin{gathered} \text { Lamp } 3 \\ \text { rotn }=\text { CC-r } \end{gathered}$	$\begin{gathered} \text { Lamp } 4 \\ \text { rotn }=\text { CC- } \end{gathered}$	$\begin{gathered} \text { Lamp } 5 \\ \text { rotn }=\text { CC-r } \end{gathered}$
		$\begin{gathered} \text { Lamp } 3 \\ \text { rotn = C-E } \end{gathered}$	$\begin{gathered} \text { Lamp } 2 \\ \text { rotn = C-E } \end{gathered}$	$\begin{gathered} \text { Lamp } 5 \\ \text { rotn }=C-E \end{gathered}$	Lamp 4 rotn $=\mathbf{C}$ -
		(Note 1)	(Note 2)	(Note 3)	(Note 4)
C 1	Capture the current detection system input offset	On unless at minimum signal limit	On unless at maximum signal limit	Off	Off
C 2	Run towards the maximum signal limit switch for 2 seconds	On unless at minimum signal limit	On unless at maximum signal limit	Off	On unless at maximum signal limit
C 3	Move to the minimum signal limit switch, then wait CALd time	On until at minimum signal limit	On unless at maximum signal limit	On until at minimum signal limit	Off
C 4	Capture actuator potentiometer input zero offset value	Off	On	Off	Off
C 5	Move to the maximum signal limit switch, then wait CALd time, capture actuator potentiometer input span value	On	On until at maximum signal limit	Off	On until at maximum signal limit
C 6	Move to $1 / 4$ of full scale position	On	On	On	Off
C 7	Wait 2 seconds, capture the move towards minimum setback value	On	On	Off	Off
C 8	Move to $3 / 4$ of full-scale position	On	On	Off	On
C 9	Wait 2 seconds, capture the move towards maximum limit setback value	On	On	Off	Off
C 10	If required, jog motor, jogs will towards the minimum signal limit switch unless $1 / 4$ of full scale is reached, then movement reverses towards maximum signal limit; direction changes again if $3 / 4$ of fullscale is reached	On	On	On for movements towards the minimum signal limit	On for movements towards the maximum signal limit
C 11	Wait jog off time; if 3 jogs have completed without adjustment, save jog on time, maximum jog on time and minimum jog on time; otherwise adjust jog on time and go to step 10	On	On	Off	Off
CAL	Calibration cycle is complete and new values are saved to non-volatile memory	On	On	Off	Off

Notes:

1. Green lamp 2 is off when at full C-E limit.
2. Green lamp 3 is off when at full CC-r limit.
3. When red lamp 4 is on the motor must run towards the full C-E limit switch.
4. When red lamp 5 is on the motor must run towards the CC-r limit switch.

The calibration system only saves the calculated parameters upon completion of a calibration cycle. Terminating of the calibration process by fault or by using the \longleftarrow key will abort the calibration and restore the previous calibration values.
c. Troubleshooting a failed calibration

The following guide will assist in troubleshooting failed calibrations. A calibration has failed if a CF X error is displayed during the calibration. To clear the error message press any key. The following table describes some of the common calibration problems and suggested solutions:

Indication	Problem	Solution
A CF 8 error occurred	The actuator is not receiving a signal from the potentiometer	See Section 2.d Positioning the potentiometer shaft for instruction on setting the potentiometer and confirming the potentiometer input
	The actuator motor is not running when required.	Use the instructions in Section 2.d Positioning the potentiometer shaft to move the motor and verify correct operation
	The limit switches are not working	Use the instructions in Section 2.d Positioning the potentiometer shaft to move the actuator to the limits and verify limit switch operation
A CF 5 error occurred	The actuator running time exceeds 1023 seconds (255 seconds for V1.00 software)	The controller will not work with this actuator, this is the maximum allowed running time
The actuator stops early during step C 3 or C 5 or does not capture the correct span	The CALd timer is not set long enough	The controller senses shaft movement during steps C 3 and C 5; if the shaft does not move or moves too slowly, timer CALd may expire prematurely; increase timer CALd for actuators with a long dead period i.e. Sure49's or actuators with a very long run time

8. Controller Menus

There are two control menus. The Basic Menu allows for the standard configuration of the controller. Covered by this menu are the setup of the analog input and output, the setting of the direction of rotation, adjustment of the actuators potentiometer and initiation of the automatic calibration system.
The Advanced Menu allows for the customization of the controller to actuators with operation outside of the standard settings.

The menus are accessed using the system keyboard. Pressing any key from normal operating mode enters the menu system. The \uparrow key moves up one item within a menu tree. The \downarrow key moves down one item within a menu tree. The \uparrow back key moves up one menu tree or, in the case of the uppermost menu, back to operating mode. Once the menu item has been selected, pressing the SELECT key displays the value associated with the item. The \uparrow up and \downarrow down keys adjust the value. The \leftarrow back key aborts any changes made to the item and moves back to the item menu. The SELECT key saves the adjusted value to non-volatile memory and returns to the item menu.

a. Basic Setup Menu

The Basic Setup Menu is used for the setup and calibration of standard actuators.

Group	Item	Description	Default Setting
In	0-10	Sets analog input to 0-10 Vdc range	
	2-10	Sets analog input to 2-10 Vdc range	
	1-5	Sets analog input to 1-5 Vdc range	
	4-20	Sets analog input to 4-20 mAdc range	4-20 mAdc
OUt	0-10	Sets analog output to 0-10 Vdc range	
	2-10	Sets analog output to 2-10 Vdc range	
	1-5	Sets analog output to 1-5 Vdc range	
	4-20	Sets analog output to 4-20 mAdc range	4-20 mAdc
Rotn	CC-r	Maximum input signal moves actuator shaft to fully counter-clockwise or retracted.	CC
	C-E	Maximum input signal moves actuator shaft to fully clockwise or extended	
Pot		Pressing \uparrow key moves actuator to increase potentiometer value. Pressing \downarrow key moves actuator to decrease potentiometer value. Display shows actual potentiometer value from 10-1023	
CAL	No	Used to initiate a self-calibration. See Setup Instructions Section 6 - The Automatic Calibration System.	
10	ioft	Adjust the analog input offset The display shows the input signal in units of full scale. This function allows the setting of non-standard input ranges. See Section 4 - Setting Nonstandard Input / Output Ranges for instructions to set this value.	Offset set for 4 mAdc = 0\%
	iSPn	Adjust the analog input span. The display shows the input signal in units of full scale. This function allows the setting of non-standard input ranges. See Section 4 - Setting Nonstandard Input / Output Ranges for instructions to set this value.	Span set for 20 mAdc $=100 \%$
	00Ft	Adjust the analog output offset. The display shows the output d-a converter value, which must be between 0 and 1024. This function allows the setting of non-standard output ranges. See Section 4 - Setting Nonstandard Input / Output Ranges for instructions to set this value.	Offset set for $0 \%=4$ mAdc
	oSPn	Analog output span. The display shows the output d-a converter value, which must be between 0 and 1024. This function allows the setting of non-standard output ranges. See Section 4 - Setting Nonstandard Input / Output Ranges for instructions to set this value.	Span set for $100 \%=20 \mathrm{mAdc}$
	FSth	Set the fail-safe threshold in units of full scale. The display shows the current threshold. See Section 5 - Selecting an Alternate Fail Position on Loss of Command Signal for instructions to set this value.	1\%
	FSPn	Set the fail-safe position in units of full scale. The display shows the current failsafe position. See Section 5 - Selecting an Alternate Fail Position on Loss of Command Signal for instructions to set this value.	101\% (Do not move on input signal fault)
	L-r	Set the unit in local or remote. The local setting must be used if you are not controlling the actuator using MODBUS or DeviceNet protocols. See Section 10 Selecting Remote Operation.	L = local control
	bAUd	Set unit Mosbuss baud rate. See Section 10 - Selecting Remote Operation.	9600
	Addr	Set Modbus Network address. See Section 10 - Selecting Remote Operation.	1

b. Advanced Setup Menus

The advanced setup menu allows the controller to be adapted to a wide variety of actuators. These parameters should be adjusted only if the pre-set values are not suitable for your application. Erratic operation can occur if these values are adjusted. Use caution when adjusting these parameters. There are four sub-menus in the Advanced Menu system:

Group	Description
ACC	Controller accuracy menu
JoG	Jogging system menu
Prot	Controller protection menu
LPoL	Limit switch polarity menu

Operation of the keyboard and display during Advanced Setup is the same as for Basic Setup. To enter the advanced setup menu:

1) From normal operating mode, use the $\boldsymbol{\uparrow}$ or \downarrow key until in is displayed.
2) Press and hold the SELECT key for 10 seconds.
3) The advanced menu is entered when the display shows ACC.
4) Use the \uparrow or \downarrow key to display the sub-menu required; ACC, JoG, Prot, or LPoL, then press the SELECT key to enter the sub-menu.
i. The Accuracy Menu [ACC]

The Accuracy Menu allows the adjustment of the controller's position accuracy, response time and calibration delay time.

The default configuration of the accuracy menu is:

1. The actuator will adjust to position within ± 1 division of full scale. This means that if the input is calling for 50%, the actuator will be positioned from 49% to 51% (SACC);
2. The controller is set to 100 divisions for full scale (FSCL), allowing for 1% accuracy;
3. Input signals less than 2% will cause the actuator to move towards 0% until the 0% limit switch turns off, regardless of the potentiometer signal (FCLS);
4. Input signals greater than 98% will cause the actuator to move towards full-scale until the full-scale limit switch turns off, regardless of the potentiometer signal (FoPn);
5. The actuator will wait for 5 seconds of no movement during calibration steps 4 and 5 before capturing values (CALd);
6. The response time (the time before the controller begins to move on a change in input signal) is set to 0.5 seconds (hLdt).
If these default values do meet the requirements for the actuator, they can be adjusted using the ACC menu.

Item	Description	Default	Range
SACC	This value can be adjusted to increase or decrease the sensitivity of the controller to input signal changes. If more accurate positioning is required, reduce this value to 0 . To reduce unwanted movement with a constantly changing input signal, increase this value.	1	0-1023
	After adjusting this value, run the automatic calibration procedure. The automatic calibration will determine the optimum operation of the controller for the accuracy you have selected.		
	Setting this value to zero may cause the controller to continuously move the actuator as it attempts to track very small input signal changes. In applications where high accuracy is required, but excessive actuator movement occurs, the response time can be increased to reduce the movement, see $\boldsymbol{h L d t}$ in this section.		
	This value is in units of full-scale.		
FSCL	This value determines the number of divisions used for full-scale. This divides the actuator travel into 100 divisions (1%). Most actuators cannot mechanically deliver accuracy better than 1%. The controller can accommodate accuracies in excess of 1 part in 200 (0.5%), but only on mechanical systems capable of this accuracy. The automatic calibration system uses this value to set full-scale for the potentiometer signal.	100	0-1023
	If this value is adjusted, the following menu items will have to be adjusted to reflect the new fullscale setting: FoPn, iSPn, oSPn and FSPn.		
	The automatic calibration system must be run after setting this value.		
FCLS	This setting ensures the actuator will move to the limit switch for input signals close to 0 . Setting this value to 1 or greater ensures that the actuator will move to the 0% limit switch regardless of the potentiometer value.	2	0-4
	Setting this value to 0 disables the force full-closed feature.		
	This value is in units of full-scale.		
FoPn	This setting ensures the actuator will move to the limit switch for input signals close to full-scale. Setting this value to 99 or less ensures that the actuator will move to the full-scale limit switch regardless of the potentiometer value.	98	$\begin{aligned} & \text { up to } \\ & -4 \text { from } \\ & \text { full } \\ & \text { scale } \end{aligned}$
	Setting this value to full-scale disables the force full-open feature.		
	This value is in units of full-scale.		
CALd	During an automatic calibration sequence the controller waits for cessation of change from the potentiometer signal at step 3 (capture 0) and step 5 (capture full-scale). This timer is default set to 5 seconds. Certain actuators have long periods of inactivity while winding return springs or other failsafe devices or may have very long actuation times. Increasing this value will allow the controller to wait longer before assuming the actuator has stopped.	50	1-255
	The timer is calibrated in 0.1 second increments. Note the display does not show the implied decimal point.		
hLdt	This timer forces a delay in the response of the controller to changing input signals. The input signal will have to have changed outside of the accuracy window for at least this length of time before a new move will begin. If the signal is moving in and out of the accuracy window, it must continuously remain outside of the accuracy window for at least this time before a new move will begin.	60	1-255
	In high accuracy applications this timer can be increased to reduce unwanted movements due to small input signal changes.		
	In applications where quick response is important, this timer can be decreased. It is not recommended that this timer be decreased for high accuracy applications unless the actuator is designed for continuous duty cycle operation.		
	This timer is calibrated in ac line half cycles or 8.33 milliseconds for 60 hz and 10.0 milliseconds for 50 hz . Note the display is in half-cycles.		

ii. The Jogging System Menu [JoG]

During the automatic calibration sequence the controller determines if jogging is required to achieve the selected accuracy. Jogging is the use of time instead of potentiometer feedback to move the actuator. During calibration, the controller determines how early it must stop the actuator motor to achieve the input position. If the selected accuracy (SACC) is smaller than the early stop values, the controller will enable jogging and use timed pulses to accomplish small movements.

For example, if the actuator requires 2 divisions to stop and has an accuracy setting of 1 division, the controller will use timed pulses (jogging) for movements of 1 division or less. For larger movements it will use the potentiometer signal to determine the stop position. By using timed pulses the controller avoids over-running the position and allows for
improved accuracy without hunting, especially for high speed actuators

If jogging is enabled during calibration, the controller will also learn the correct time to move 1 division during calibration. After each jog, a delay is inserted to wait for the potentiometer signal to respond. The potentiometer signal is the final value used to determine if the actuator is in position.

The calibration system will disable jogging if it is not required.
The jogging system can be adjusted to allow for operation not anticipated by the automatic calibration system.

Item	Description	De- fault	Range
Jon	This value is the length of the timed motor run pulse. The value is determined automatically during calibration.	20	0-255
	This value should equal the time to move the actuator 1 division in the same direction as the last move.		
	Most actuators have lash in their gearing systems. This lash creates a requirement for longer motor run times during a move in a direction opposite of the last move. A correctly adjusted jog on time will move the actuator 1 (one) division during a same direction move. It may require several jogs for a single division move in the reverse direction. This is normal.		
	Increasing this value from the calibration determined value may cause the actuator to be unable to achieve the required set-point.		
	This timer is calibrated in ac line half cycles or 8.33 milliseconds for 60 hz and 10.0 milliseconds for 50hz. Note the display is in half-cycles.		
JoFF	The jog off time is time required for the accurate reading of the position potentiometer after a jog has completed.	$\begin{gathered} 10 \\ \text { (V1.00) } \end{gathered}$	0-255
	Setting this value too low will cause actuator hunting. Too large a value will unnecessarily delay movement. The default value of 2 seconds should be satisfactory for most applications.	20(V1.11/V1.12)	
	This timer is automatically set to 2 seconds by the calibration system should the calibration system determine that jogging is required.		
	Setting this value to 0 will disable the jogging system.		
	The timer is calibrated in 0.1 second increments. Note the display does not show the implied decimal point.		
hion	This value is operational only on V1.00 software and is disabled in all later versions.	40	0-255
	This value set the upper limit for the jog on value. V1.00 software automatically adjusts the jog on value after each jog. This value determines the highest value the jog on time could be set to during adjustment.		
	The value is set in jog on time units of ac line half cycles or 8.33 milliseconds for 60 hz and 10.0 milliseconds for 50hz. Note the display is in half-cycles.		
Loon	This value is operational only on V1.00 software and is disabled in all later versions.	1	0-255
	This value sets the lower limit for the jog on value. V1.00 software automatically adjusts the jog on value after each jog. This value determines the lowest value the jog on time could be set to during adjustment.		
	The value is set in jog on time units of ac line half cycles or 8.33 milliseconds for 60 hz and 10.0 milliseconds for 50hz. Note the display is in half-cycles.		

iii. The Protection Menu [Prot]

The controller incorporates several measures to protect the actuator motor and mechanism from damage. An optional current sense system is also available.

The basic protection measures include maximum
running time and a forced delay between moves. The over-current system allows for over-current monitoring and shutdown.

All protection systems disable further movement in the same direction after a fault is detected.
Movements in the opposite direction can be initiated to reset the protection system.

Item	Description	Default	Range
tFLt	This value is the maximum motor running time for the actuator. Set automatically to 10 seconds plus the actual running time determined during calibration. If this time is exceeded, the display will show $\mathbf{f} \mathbf{p n}$, which indicates that the actuator failed to reach position in the maximum allowed time. Setting this timer to 0 disables the timed protection system. This timer is calibrated in 1.0 second increments.	60	$\begin{gathered} 0-255 \\ \text { V1.00/ } \\ \text { V1.11 } \\ \\ 0-1023 \\ \text { V1.12 } \end{gathered}$
trnd	This value is the minimum time delay imposed between movements. This timer allows the actuator motor to stop before each run, reducing motor heating. Do not set this timer shorter than the natural stopping time of the actuator motor. This timer is calibrated in 0.1 second increments. Note the display does not show the implied decimal point.	10	0-255
hCUr	The controller has an optional current monitoring system. This value determines the maximum full load amps of the actuator motor. Set this value to an amount at least 5\% above the loaded running amps for the motor. The CSPn setting allows for the scaling of the sensed current value. The running current of the motor can also be displayed using the CSPn function. This value is scaled as 0.00A. Note the display does not show the implied decimal point.	200	0-1023
tCUr	The controller has an optional current monitoring system. This value determines the maximum time that the actuator can exceed the preset full load amps $\mathbf{h C U r}$ of the actuator motor before a fault is declared. The display will indicate $\mathbf{f} \mathbf{o c}$ should this protection feature activate. This timer is calibrated in 1 second increments for V1.00 software and 0.1 second increments in V1.11 and later software versions. Note the display does not show the implied decimal point.	0	0-255

$\begin{array}{lllll}\text { Coft } \quad \text { The controller has an optional current monitoring system. This value sets the zero offset for the } & 0-1022\end{array}$ current detection system. This value is automatically set during calibration.

The value is adjusted by selecting the menu item, then adjusting the value to 0 .
The value is calibrated in 0.01 A increments. Note the display does not show the implied decimal point.
CSPn The controller has an optional current monitoring system. This value adjusts the span of the current n/a 0-1023 detection system.

To set this value, select the menu item and then manually run the motor using a wire jumper or manual push button station. The display will indicate the running amps of the motor. The displayed value can be verified against a clamp-on or in-line ammeter. Use the keyboard to adjust the display to indicate the actual running current of the motor.

This value is scaled as 0.00A. Note the display does not show the implied decimal point.
PFth The controller has an optional "fail feedback signal system". This parameter sets the threshold in $\quad 2 \quad 2-10$ units (\%) of full scale. The default setting of 2 means the feedback signal will be in fault if it is less than or equal to -2 or greater than or equal to 102.

To ensure the detection of an open wiper signal condition, connect a resistor of $33 \mathbf{k} \Omega$ between terminals 1 and 2 of terminal block TB2. When the sensor used has that resistance or less, it does not need the extra resistor if the circuit is not open.
PFPn The controller has an optional "fail feedback signal system". The following operations are available
$0 \quad 0-3$ upon failure of the feedback signal:

0 - disables the option, default setting. 1 - fail in place; 2 - move to minimum command signal position, closed; 3 - move to maximum command signal position, open.

iv. The Limit Switch Menu [LPoL]

The controller has relay controlled limit switch outputs.
The actuator limit switches are always wired to open at the ends of travel. The relay outputs can be programmed to be either open or closed when at limit.

Item	Description	Default	Range
oPoL	Selects the polarity of the maximum input signal limit switch relay output contact, display of n.o. $=$ normally open, n.c. $=$ normally closed,	n.o.	n.o. /
CPoL	Selects the polarity of the minimum input signal limit switch relay output contact, display of n.o. $=$ normally open, n.c. $=$ normally closed	n.o.	n.o. /

9. Error Messages and Troubleshooting

The controller will display an error message when it is unable to complete a requested operation. The following table lists the operations and the associated error messages:

Message	Operation	Fault Description
$\mathrm{f} \mathbf{p g}$	Initial application of power	The controller has detected invalid firmware during the power on test process. The operation of the controller may be unpredictable. Do not operate a controller that displays this error message.
f tb	Initial application of power	The controller has detected a corrupted parameter table during the power on test process. During setup and calibration, the controller stores parameters to non-volatile flash memory. A checksum is also stored to verify the table. During the power on test process the parameters are recalled and the checksum verified. If the stored checksum does not match the contents of the recalled table, this message is displayed. To clear this error, see Section 3. Reloading the factory settings to rebuild the parameter table. After completing the factory reload, perform an automatic calibration. After verifying the operation of the controller, re-cycle the controller power. If the error message returns, the controller flash memory is damaged. Do not operate a controller that continues to display this error message after the above steps have been taken.
f ee	Pressing the SELECT key to save a value	The controller was unable to save a parameter to non-volatile memory. Do not operate a controller that displays this message.
$\mathrm{f} \mathbf{p}$	During a positioning operation	The controller was unable to reach position during a move operation. The following causes may have prevented the controller from reaching position: 1. The move was to full open or full close and the controller end of travel limit switch did not open; 2. The end of travel limit switch for the direction of move requested has failed; 3. The actuator motor did not run when requested; 4. The actuator is jammed; 5. The controller's maximum motor running time ($\mathbf{(F L t}$) is set to too short a value, this timer is set automatically during calibration; 6. The controller is not correctly calibrated, run the automatic calibration system. The controller has four status lamps to assist in troubleshooting position faults. Verify that the limit switch lamp is on and that the run motor lamp turns on for the direction of move requested. See Section 11. Connection Drawings for a description of the status indicators.
foc	During a positioning operation	During a positioning operation, a motor over-current condition has been detected. See Section 6. Setting the over-current protection system for details. If an f oc error occurs and you do not have the current sense option installed, see Section 3. Reloading the factory settings to rebuild the parameter table. This error can only occur by setting parameter tCUr greater than 0 , which enables current monitoring.
Incorrect position acheived	During a positioning operation	The controller is not correctly calibrated; see Section 7. The Automatic Calibration System for instruction on performing a calibration and possible problems that could occur during a calibration.

Status Lamp	Operation
Lamp 2 rotn $=$ CC-r	On when not at minimum signal limit
Lamp 2 rotn = C-E	On when not at maximum signal limit
Lamp 3 rotn = CC-r	On when not at maximum signal limit
Lamp 3 rotn = C-E	On when not at minimum signal limit
Lamp 4 rotn = CC-r	Motor must run while lamp on until at minimum signal limit
Lamp 4 rotn = C-E	Motor must run while lamp on until at maximum signal limit
Lamp 5 rotn = CC-r	Motor must run while lamp on until at maximum signal limit
Lamp 5 rotn = C-E	Motor must run while lamp on until at minimum signal limit
Indicates actual position of the actuator in units of full-scale (Default setting is 0 - 100). Displays calibration menus; cleared by pressing \leftarrow key until position is displayed	

10. Selecting Local/Remote Operation

There are 2 modes of operation of the actuator: Local and Remote. Two communication protocols are available in remote mode - Modbus and DeviceNet. Communication protocol for remote operation must be chosen at the time of ordering. The ACT100 actuator card has the Modbus option by default. Refer below section for Modbus Operation and next section for DeviceNet operation. In order to interface to MODBUS there are several communication parameters that need to be selected using the Basic Parameter Menu. These are:

a. Manual Operation (L-r)

I. L-r. - Selects Local (Manual control of parameter selection) or remote (MODBUS) parameter selection. To switch to remote or BUSS operation, click the 1st key on the left and keep pressing until L-r is displayed. Then click the 3rd key to toggle to BUS and press 4th key to select BUS. You are now in remote operation. To manually return to Local operation, push any key for ten seconds until the display changes from BUSS to L-r.
II. Baud rate.- Selects the communication speed of the device. While in the Basic Parameter Menu, scroll down until the display reads bAUd. Press the Select key, then Press the \uparrow or \downarrow key to scroll thru the available options. These options are: 2400, 4800, $\mathbf{9 6 0 0}, \mathbf{1 4 , 4 0 0}$. Press the Select key to save the option you want.
III. Address. - Selects the Modbus Network address for the ACT-100 unit. While in the Basic Parameter Menu, scroll down until the display reads Address. Press the Select key, then Press the \uparrow or \downarrow key to increase or decrease the address number until you have the value that you want. The options are: 1-255. Press the Select key to save the option you want.

IV. Br.- Selects the activation point for the SURE POWER Brake. Either Fully Open or Fully Closed. scroll down until the display reads Br. Press the Select key, then Press the \uparrow or \downarrow key to scroll thru the available options. These options are: $\mathbf{C r}$ or $\mathbf{C e}$. Press the Select key to save the option you want.	
b. Remote Operation Configuration Registers.	
I. ZERO OFFSET write to register	
II. SPAN write to register 0x17 (23	17 (23 decimal).
III. OPEN LIMIT TOLERANCE write to register	$\begin{array}{rr} \text { register } & 0 \times 19 \\ \text { (25 decimal). } \end{array}$
IV. CLOSE LIMIT TOLERANCE write to registe	register 0x1A (26 decimal).
V. CONFIG PEAK CURRENT write to register	$\underset{\text { register } \quad 0 \times 1 B}{\text { (27 decimal). }}$
VI. IDLE CURRENT write to register	$\begin{array}{r} 0 \times 1 \mathrm{C} \\ \text { (28 decimal). } \end{array}$
VII.JOG MOVE TOLERANCE write to register	register 0x1D (29 decimal).
VIII. JOG WAIT TIME write to register	$\begin{array}{r} 0 \times 1 E \\ \text { (30 decimal). } \end{array}$
IX. JOG OPEN TIME write to register	$\begin{array}{r} 0 \times 1 F \\ \text { (31 decimal). } \end{array}$
X. LOAD ZERO OFSETT read from register	$\begin{array}{rr}\text { gister } & 0 \times 20 \\ (32 \text { decimal). }\end{array}$
XI. LOAD SPAN read from register	$\begin{array}{r} 0 \times 21 \\ \text { (33 decimal). } \end{array}$

c. Remote Operation Commands (BUSS)
XII.BUSS. - Unit is in remote mode (MODBUSS). To switchback and forth between Local (L-r) and remote (BUSS)write any value to register0×35
(53 decimal).
XIII. FULL OPEN write any value to register 0×01

(01 decimal).
XIV. STOP write any value to register 0×02
(02 decimal).
XV. CALIBRATE write any value to register 0×03
(03 decimal).
XVI. RESET write any value to register 0x04XVII. LOAD DEFAULTS write any value to register 0x05
(05 decimal).
XVIII. PROTECT PARAMETERS write any value to register 0x06
(06 decimal).
XIX. REMOVE PARAMETER PROTECTION write any value to register 0x07
(07 decimal).
XX.TOGGLE OVERLOAD RESTART write any value to register
0×09
(09 decimal).
XXI. FULL CLOSE write any value to register $\mathbf{0 x 2 F}$
(47 decimal).
XXII. LOCAL REMOTE SELECT write any value to register 0×35
(53 decimal).
XXIII. GO TO XX write any value BETWEEN 0-MAX (0-100) to register
0×36
(54 decimal).
d. Parameters Available by READ Commands.
I. CURRENT POSITION (2 bytes) read register $0 \times 0 \mathrm{~A}$ (10 Decimal). Returns current position of the shaft.
II. PEAK CURRENT (2 bytes) read register 0x0C (12 decimal). Returns maximum current read.
III. CURRENT NOW (2 bytes) read register 0x0D (13 decimal). Returns most recent current reading.
IV. PREVIOUS DIRECTION (1 byte) read register $0 \times 0 \mathrm{E}$ (14 decimal). Returns the last direction the shaft was moving.
V. LOCAL REMOTE (1 byte) read register 0x0F
(15 decimal). Returns whether the device is in in Local or Remote mode (True/False).
VI. LAST SEEK VALUE ($\mathbf{2}$ bytes) read register 0×10 (16 decimal). Returns the last value that the shaft was supposed to move to.
VII.OVERLOAD (1 byte) read register
0×12
(18 decimal). Returns whether the device is in overload (True/False).
VIII. RESTART OVERLOAD STATUS (1 byte) read register $0 \times 0 \mathrm{E}$
(14 decimal). Returns restart overload status setting.
IX. LOG TIME (2 bytes) read register
$0 x 0 \mathrm{E}$
(14 decimal). Returns

e. DeviceNet Operation.-

If the ACT-100 PCB includes the DeviceNet Interface Board (DIB), the device will default to remote mode.
The following are the switch (S1) settings for the DIB in order to select the device address and to set the Communication speed (Baud Rate): See Figures 1 and 2 for wiring diagram for ACT-100 and DeviceNet card.
set device address (0 - 63) S1-1 (MSB) thru S1-8 (LSB) set device baud rate (0-3) S1-9 (MSB) and S1-10 (LSB)
00 = 125K
$01=250 K$
$02=500 \mathrm{~K}$
03 = NV

NOTE: For wiring between ACT-100 PCB and DeviceNet Interface Board, wire per table below

ACT-100 PCB	DeviceNet Inter- faceBoard (DIB)	Signal
Pin 1	Pin 1	DO
Pin 2	Pin 2	DO
Connect SHLD to one end		

For example, to set address 9 with a baud rate of 250 K the switch would set as follows:

1		0
2		0
3	1	0
4		0
5	1	0
6		0
7	1	0
8		
9		
10		

Switch position 12345678910
Switch setting 0000010101
Connect CAN network to J13. Power to board has to be provided by CAN network (7-30VDC). Note: ACT-100 normal AC power connection is required. Power to J13 is only from the CAN bus.

V +	CanH	SHLD	CanL	V-

Upon CAN bus power up: LED's flash green-red consecutively (M LED for "module", N LED for "network", A LED for "actuator")

Once communications with the network is established the " M " and " N " LED are on green. The " A " LED changes color and flashes per actuator direction and motion as per table below

Color	Actuator Indication
RED	Actuator at OL
Blinking RED	Actuator moving OPEN
GREEN	Actuator at CL
Blinking GREEN	Actuator moving CLOSE
RED/GREEN	Actuator STOPPED

Command Words:

At Class 0×40, instance 0×01 and attribute 0×01 :
bit 1 open actuator
bit 2 close actuator
bit 3 stop actuator
bit 4 "remote shutdown" (actually also stop)
bit 5 calibrate
bit 6 reset (also stop)
Below snapshots indicate example of commands used in direct mode.
To calibrate the ACT-100 simply issue the command CALIBRATE by setting bit 5 of the command word 0×40, instance 0×01, and attribute 0×01 to " 1 ". See example below.

Setpoint Words:

At class 0×40 instance 0×01 and attribute 0×02 (forces actuator to specific position). Format 0-100\%.
See example below for instruction of moving the actuator to 100\% (64 Hex).

Status Word:

At class 0×40 instance 0×01 and attribute 0×03 has bit mapped actuator status
bit 1 open limit reached
bit 2 closed limit reached
bit 3 remote mode (will be forced into this mode if deviceNET board is connected to ACT).
bit 4 local mode
bit 5 act running open
bit 6 act running closed
bit 7 esd active
bit 8 commanded open
bit 9 commanded closed

Alarm Word:

At class 0×40 instance 0×01 and attribute 0×04 reads error register from ACT-100 board.

Position:

At class 0×40 instance 0×01 and attribute 0×05 gives you the actuator position in 0-100 \% format

See example below for instruction to move actuator to 100\%.
(64 Hex)

Analog Input:

At class 0×40 instance 0×01 and attribute 0×06 from ACT board.
Deadband Number at class 0x40 instance 0x01 and attribute 0×07 reads/write SACC value of ACT board.

Reversal Delay

At class 0x40 instance 0x01 and attribute 0x0D reads/writes HLDT value of ACT board.

Dimage0

At class 0×40 instance 0×01 and attribute 0×14 gives the 4 digital inputs on J1 and J2 (open reads 1)

J2

| GND | DI4 | GND | DI3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Dimage 1

At class 0×40 instance 0×01 and attribute 0×15 gives the address from S1 (0×000000 to 0x111111)

Dimage2

At class 0×40 instance 0×01 and attribute 0×16 gives baud rate from S1 (0x00 to 0x11).

Raw Position

At class 0×40 instance 0×01 and attribute 0×18 gives position in ADC counts 12-bit format (0×000 to 0xFFF).

Raw Analog Input Value

At class 0×40 instance 0×01 and attribute 0×01 from ACT board.
The ACT100 DeviceNet card is in polling mode by default.
Ensure that the DIP switch setting shown in the table in section 10.e matches the device address and baud rate. For example, in the below case, the DIP switch settings for slave address of 28 and baud rate of 125 K will be:
Switch position: 12345678910

Refer to the command words to change actuator position.
Check the box next to 0 (which is bit 1) to open the actuator Check the box next to 1 (which is bit 2) to close the actuator Check the box next to 2 (which is bit 3) to stop the actuator Check the box next to 3 (which is bit 4) to stop the actuator remotely
Check the box next to 4 (which is bit 5) to calibrate the actuator
Check the box next to 5 (which is bit 6) to reset the actuator For each command, check the box and uncheck immediately after 2-3 seconds to stop continuously writing into the card. For example, to move the actuator clockwise to 100%, check the box next to 0 and uncheck after 2-3 seconds. Actuator should move and then stop after reaching 100% position.
When actuator calibration is enabled, the DeviceNet card returns actuator to normal operation after calibration is complete.

Switch setting: 0001110000

DeviceNet Master Simulator

The below tables cover command database and actuator mapping information.

Database

Variable	Type	C=64 I=1 $\mathbf{A = \mathbf { X }}$	
StatusWord	UINT	3	Bit Mapped Actuator Status
AlarmWord	UINT	4	Bit Mapped Actuator Alarms
Position	INT	5	AIO Scaled Value/Position
Spare AI	INT	6	AI2 Scaled Value
DeadBand	UINT	7	Actuator DeadBand
Dilmage0	UCHAR	20	Voltage Sensing Input Image
Dilmage1	UCHAR	21	Address Switch Image
Dilmage2	UCHAR	22	Data Rate Switch Image
Dilmage3	UCHAR	23	Push Buttons Image
Raw Position	UINT	24	Raw Position
Raw AI	UINT	25	Raw Analog Input
CommandWord	UINT	1	Bit Mapped Actuator Commands
Setpoint	INT	2	Remote Setpoint in same scale as the position
ControlWord	UINT	12	Bit Mapped Configuration Word
InstRevTime	UINT	13	Motor Direction Change Delay in 100ms resolution.
PosLo	INT	14	Analog Input Configuration Variables
PosHi PosScale	INT	15	16
PosFailHi	FLOAT	17	Position Valid Range
PosFailLo	INT	18	Actuator Fail Position
FailPosition	INT	19	

Actuator Status Mapping

Bit	Description
0	Open Limit
1	Close Limit
2	Remote
3	Local
4	Actuator Running Open
5	Actuator Running Close
6	ESD Active
7	RSV
8	Motor Commanded Open
9	Motor Commanded Close
10	DI1
11	DI2
12	DI4
13	DI5
14	DI6
15	DI7

Actuator Alarm Mapping

Bit	Description
0	Loss of Position Potentiometer
1	Setpoint Commanded with no Potentiometer
$2-15$	RSV

DI Image0 Mapping

Bit	Description
0	DI0
1	DI1
2	DI2
3	DI3
4	DI4
5	DI5
6	DI6
7	DI7

Command Word Mapping

Bit	Description
0	OPEN
1	CLOSE
2	STOP
3	REMOTE ESD
$4-15$	RSV

Control Word Mapping

Bit	Description
$1-2$	ESD
3	ON - Actuator On/Off Mode OFF - Actuator Setpoint Mode
4	ON - Position Potentiometer is not Installed OFF - Position Potentiometer is Installed
$5-13$	Reserved

Default value for the Control Word is 0
Position ScalingPosition = INT \{ AdcOScale * (RawAd0 AdcOLo) / (AdcOHi - AdcOLo)\}
Note that the Remote Setpoint, Deadband, FailPosition are in units per AdcOScale.

Emergency Shut Down

Action	Configuration
Fail to Preset	$\mathrm{ESD}=3$
Fail as is	$\mathrm{ESD}=0$
Open	$\mathrm{ESD}=1$
Close	$\mathrm{ESD}=2$

Section 11: Connection Drawings

Connection Drawing ACT-100

1. Limit switches shown in the most C-R position
2. Green lamp off indicates potentiometer at full CC-E
3. Green lamp off indicates potentiometer at full CC-E
4. Red light on indicates motor running in C-r direction
5. Red light on indicates motor running in CC-E direction
6. Alarm output will be open when power off, if in fault or when display in menu modeC

Figure 2 - DeviceNet Card [ACT100+Devicenet Interface Board]

Connection Drawings

Figure 3 - DeviceNet Interface Board

Figure 4 - Connections to the customer analog input terminals

Connections to the customer Analog Output terminals

Figure 5 - Connections to the customer analog output terminals

DIRECT SALES OFFICE LOCATIONS

AUSTRALIA		ITALY	
Brisbane		Phone:	+39-081-7892-111
Phone:	+61-7-3001-4319	Fax:	+39-081-7892-208
Fax: +61-7-3001-4399			
		JAPAN	
Perth:		Tokyo	
Phone:	+61-8-6595-7018	Phone:	+81-03-6871-9008
Fax:	+6186595-7299	Fax:	+81-03-6890-4620
Melbourne:		KOREA	
Phone:	+61-3-8807-6002	Phone:	+82-2-2274-0748
Fax:	+61-3-8807-6577	Fax:	+82-2-2274-0794
BELGIUM		MALAYSIA	
Phone:	+32-2-344-0970	Phone:	+60-3-2161-0322
Fax:	+32-2-344-1123	Fax:	+60-3-2163-6312
BRAZIL		MEXICO	
Phone:	+55-19-2104-6900	Phone:	+52-55-3640-5060
CHINA		THE NETHERLANDS	
Phone:	+86-10-5689-3600	Phone:	+31-15-3808666
Fax:	+86-10-5689-3800	Fax:	+31-18-1641438
FRANCE		RUSSIA	
Courbevoie		Veliky Novgorod	
Phone:	+33-1-4904-9000	Phone:	+7-8162-55-7898
Fax:	+33-1-4904-9010	Fax:	+7-8162-55-7921
		Moscow	
GERMANY		Phone:	+7 495-585-1276
Ratingen		Fax:	+7 495-585-1279
Phone:	+49-2102-108-0		
Fax:	+49-2102-108-111	SAUDI ARABIA	
		Phone:	+966-3-341-0278
INDIA		Fax:	+966-3-341-7624
Mumbai			
Phone:	+91-22-8354790	SINGAPORE	
Fax:	+91-22-8354791	Phone:	+65-6861-6100
		Fax:	+65-6861-7172
New Delhi			
Phone:	+91-11-2-6164175		
Fax:	+91-11-5-1659635		

[^0][^1]SOUTH AFRICA
Phone: $\quad+27-11-452-1550$
Fax: $\quad+27-11-452-6542$
SOUTH \& CENTRAL
AMERICA AND THE CARIBBEAN
Phone: +55-12-2134-1201
Fax: +55-12-2134-1238

SPAIN
Phone: +34-93-652-6430
Fax: $\quad+34-93-652-6444$

UNITED ARAB EMIRATES
Phone: +971-4-8991-777
Fax: $\quad+971-4-8991-778$
UNITED KINGDOM
Bracknell
Phone: +44-1344-460-500
Fax: +44-1344-460-537

Skelmersdale
Phone: +44-1695-526-00
Fax: +44-1695-526-01

UNITED STATES
Jacksonville, Florida
Phone: +1-904-570-3409
Corpus Christi, Texas
Phone: +1-361-881-8182
Fax: $\quad+1-361-881-8246$
Deer Park, Texas
Phone: +1-281-884-1000
Fax: $\quad+1-281-884-1010$
Houston, Texas
Phone: +1-281-671-1640
Fax: $\quad+1-281-671-1735$

DRISSSAR
NATURAL GAS SOLUTIONS
www.dresserngs.com

[^0]: Industrial Products Group RCS and Andco Actuators 16240 Port Northwest Drive Houston, TX 77041
 T: 832-590-2306
 Toll Free: 1-800-945-9898
 F: 713-849-2879

[^1]: © 2018 Natural Gas Solutions North America, LLC - All rights reserved. Natural Gas Solutions reserves the right to make changes in specifications and features shown herein, or discontinue the product described at any time without notice or obligation. Contact your Dresser Natural Gas Solutions representative for the most current information. The Dresser Logo and all Trademarks containing the term "Dresser" are the property of Dresser, LLC, a subsidiary of Baker Hughes, a GE Company.

